
B I K E S H A R E

F I N A L D O C UME N T

TEAM

May 15-09

DATE

Tuesday, April 28, 2015

MEMBERS

Austin Adam
Mohammed Alkatheeri

Derrick Anderson
Sean Cavanaugh
Jeremy Curtiss
David Kominek
James McGinnis

Derek Otoo
Caleb Schulze
Brian Simons

Joe Ternus
Nick Ziegeweid

ADVISOR

Mani Mina

CLIENT

Mark Kargol

TABLE OF CONTENTS

TEAM 1

DATE 1

MEMBERS 1

ADVISOR 1

CLIENT 1

INTRODUCTION 4

PROJECT DESIGN 5

SYSTEM REQUIREMENTS 5
FUNCTIONAL REQUIREMENTS 5
NON-FUNCTIONAL REQUIREMENTS 5
FUNCTIONAL DECOMPOSITION 5
HIGH LEVEL DECOMPOSITION 5
HARDWARE/SOFTWARE SPECIFICATIONS 6
SYSTEM OVERVIEW 6
HARDWARE SPECIFICATIONS 6
SYSTEM POWER 8
CONTROL 8
OUTPUT 10

IMPLEMENTATION OF PROJECT 10

CENTRAL SERVER 10
OVERVIEW 10
DATA STORAGE/DATABASE 10
REST API 12
ADMIN UI 15
DOCKING STATIONS 15
OVERVIEW 15
MODULE DECOMPOSITION 16

TESTING PROCESS 17

WEB API TESTING 17

CONCLUSION 18

APPENDIX 1: OPERATION MANUAL 19

USER – DOCK 19
BIKE CHECKOUT 19
BIKE CHECK IN 19

ADMIN - WEBSITE 19
ADD BIKE 19
LOCK BIKE 20
UNLOCK BIKE 20
EDIT BIKE 21
ADD DOCK 22
EDIT DOCK 22

APPENDIX 2: OTHER CONSIDERATIONS 24

APPENDIX 4: CODE 25

INTRODUCTION

The project we were tasked with was proposed by the Government of the Student Body (GSB) at
Iowa State University called Bike Share. The GSB Bike Share project is the first known collegiate
level bike sharing program in the country. It is an initiative to provide a bike-sharing service to
Iowa State University and Iowa communities. The project requires considerable work from a
collection of multi-disciplinary teams to create a working solution. Mechanical, electrical and
software systems must be developed to provide a robust and expandable program. Our portion
of the project consisted of creating the code and infrastructure to manage the checking in and
checking out of bikes in the system. The job of integrating the bikes and docks that other team’s
created into a fully functional system also fell upon us. This integration took a lot of time
collaborating and meeting with the other teams as well as our advisor, Mark Kargol. There are
already solutions on the market, so the GSB BikeShare project is expected to provide a solution at
or below the cost of alternative solutions. We hope that this will provide alternate transportation
to students, reduce traffic congestion, and lessen emissions that are harmful to the environment.

One of the main focuses of this project consists of creating a system that is very user friendly. Our
implementation uses the existing infrastructure provided by the ISU card system. This allows us
to implement a “one touch checkout” which is a great improvement over existing bike sharing
systems which implement temporary codes and other complicated checkout methods. We firmly
believe that simplicity of use is the greatest factor in success of any project. In our system a
student need only touch their card to any dock with a bike available. No kiosk. No additional input.

What we have seen from other bike share projects is that they have to perform a long analysis of
a working system and make constant changes to the number of bikes and docks at any given
location at any time. In other systems this can be difficult and requires a technician to add and
remove docks from a location. Our system will strive to avoid that problem as well. Our system
has independent docks, meaning that every dock is self contained and can be moved
independently of the others. In other systems the kiosk method is implemented which causes
docks to have to be connected to a singular input/output device which allows checkout. This
device has advantages when a complicated checkout process needs to be accommodated.
However the drawbacks are needing to run connections to all the docks from the kiosk which
makes redistribution of the docks a difficult process. Our system overcomes this drawback by
being “Plug-N-Play”. Meaning any dock can be placed in any location at any time and be
redistributed at will, no kiosk required. Each dock needs only be provided electricity and WiFi and
can run independently. This allows non technical savvy administration of the system. Including
winter or other weather removal, dock redistribution, and unlimited expansion at any time.

PROJECT DESIGN

SYSTEM REQUIREMENTS

FUNCTIONAL REQUIREMENTS

● When a user swipes their ID card then the system will unlock a bike for the user.
● When a user puts the bike into the station then the system will lock and check in the bike.
● When a user checks in a bike and marks it as damaged then the system will make the bike

unavailable to be checked out.
● When an unauthorized user attempts to check out a bike then the system will not unlock

a bike.
● When an unauthorized user attempts to check in a bike that does not belong then the

system will not lock the bike.
● When an administrator performs maintenance on a damaged bike then the system will

make the bike available to be checked out.
● An administrator will be able to view bike transactions and filter it by bike ID, station ID,

student or faculty ID, or date.
● Keep track of the time at which a bike was checked out and in along with the users

information.

NON-FUNCTIONAL REQUIREMENTS

● Only students and faculty should be able to checkout a bike
● The system shall be weather proof.
● The checkout process should take less than 5 seconds.
● All bike transactions should be kept for 2 years for auditing purposes.

FUNCTIONAL DECOMPOSITION

HIGH LEVEL DECOMPOSITION

FI GURE 1 . H IGH L EVEL DEP ICT ION O F THE SYSTE M

Client Database Dock REST API

HTTP

RFID MongoDB

At a high level, the bike share system can be decomposed into several modules. At heart, the
system is a fairly standard distributed network. The physical station interacts with users through
RFID cards and with the central server through HTTP requests to the REST API. The REST API
responds to the docking stations through HTTP and accesses the Database through MongoDB
protocol.

HARDWARE/SOFTWARE SPECIFICATIONS

SYSTEM OVERVIEW

The system will incorporate various RFID readers for inputs, and use RGB LEDs in various colors to
indicate dock status and transaction success/failures to the user. When the user swipes an ISU
card, the system will go through three steps before unlocking the bike to the user. If one of these
steps is not successful, the system will not unlock the bike. First, the system will check if the bike
had been marked as damaged or if it is useable. Second, the system will check with the server if
this user is allowed to check out a bike, as users may only check out one bike at a time. The third
step is to ensure that the user is authorized to use the system, and is enrolled in the Iowa State
University user database. Only Iowa State students and facility will be allowed to use the system.
If all this steps are successful, the green LED will light up for five seconds and the system will
unlock the bike. Otherwise, a red LED will light up indicating an error.

When a user returns a bike to the dock, the system will follow a similar process to check the bike
in. Once the bike is completely inserted into the dock, the RFID reader inside the dock will read
the bike’s unique ID number from the RFID tag on the bike. The bike ID number will then be sent
to the server, where the bike ID is verified belonging to our system, and not already checked into
a different dock. If the check in is allowed by the system, the dock LEDs flash green and the bike
is locked. If there is an anomaly detected with the bike ID being checked in, such as the bike
already being checked in, the system will lock the bike in the lock and freeze the dock disallowing
the bike to be checked out. The dock color will change to yellow, and a flag will be set on the
admin web page indicating that dock is in a locked state.

HARDWARE SPECIFICATIONS

FI GURE 2 . F I N AL DESI G N A ND LAYOUT ON THE DO CK

The system will incorporate various RFID readers for inputs, and use RGB LEDs in various colors to
indicate dock status and transaction success/failures to the user. When the user swipes an ISU
card, the system will go through three steps before unlocking the bike to the user. If one of these
steps is not successful, the system will not unlock the bike. First, the system will check if the bike
had been marked as damaged or if it is useable. Second, the system will check with the server if
this user is allowed to check out a bike, as users may only check out one bike at a time. The third
step is to ensure that the user is authorized to use the system, and is enrolled in the Iowa State
University user database. Only Iowa State students and facility will be allowed to use the system.
If all this steps are successful, the green LED will light up for five seconds and the system will
unlock the bike. Otherwise, a red LED will light up indicating an error.

When a user returns a bike to the dock, the system will follow a similar process to check the bike
in. Once the bike is completely inserted into the dock, the RFID reader inside the dock will read
the bike’s unique ID number from the RFID tag on the bike. The bike ID number will then be sent
to the server, where the bike ID is verified belonging to our system, and not already checked into
a different dock. If the check in is allowed by the system, the dock LEDs flash green and the bike
is locked. If there is an anomaly detected with the bike ID being checked in, such as the bike
already being checked in, the system will lock the bike in the lock and freeze the dock disallowing
the bike to be checked out. The dock color will change to yellow, and a flag will be set on the
admin web page indicating that dock is in a locked state.

F I GURE 3 . B A SI C CO NCEPT UAL EL ECTR IC AL D IA GR AM

SYSTEM POWER

120 VAC TO 36 VDC POWER SUPPLY

We chose to use a 9.7A Regulated Switching power supply
because this model will allow us to step down and convert the
120 VAC from a grid tie to 36 VDC which will be used to power
solenoid and the rest of the circuit.

36 VDC TO 5 VDC REGULATOR CIRCUIT

For the regulator circuit we chose to use the OKI-78SR series
in order to bring 36 VDC to a usable 5 VDC to power the
Raspberry Pi. The reason we decided to build a regulator
circuit instead of a voltage divider was because they
automatically maintain a constant voltage level independent
of how much power is drawn from the line, thus ensuring that
our solenoid will always have enough power to open the lock.
The 78SR can be very efficient, even at high differential input-
output voltages, and can maintain this voltage without
overheating.

SOLAR PANEL

As an alternative energy option, we chose to spec out the
needed solar power components in order to have a green
alternative power option. We decided that the panels should
be able to power eight bike locks at a time and will be great
for rural areas with limited access to the electric grid.

BATTERY BANK

The battery bank will store the power that is collected from
the solar panels and will be stored within the battery cells.
The three 12VDC battery bank will be a great fit for the solar
side of this project while also being able to hold enough
charge for several hours, enough to power the locks and all of
the electrical components.

CONTROL

CHARGE CONTROLLER

The primary function of this charge controller is to protect the
battery from an overcharge and block reverse current.
Without the charger, the life of the batteries will mostly likely
be compromised quick.

INVERTER

An inverter is an electronic device or circuitry that converts
direct current (DC) to alternating current (AC). This would
change the power coming from the solar panels/ battery
banks into a usable AC voltage/current for the bike rack
components.

RELAY

The relay we are using is an electrically operated switch. This
will be used when it is necessary to control a circuit by a low-
power signal. In our case the relay will be sending a signal to
the solenoid when the bike needs to be unlocked.

RASPBERRY PI

The Raspberry Pi is a credit-card sized computer board that
we have programmed to run our bike transactions, control
the bike lock, and allow access using the RFID card reader.
The Raspberry Pi has a voltage input of 5V and is able to run
several outputs.

PUSH BUTTON

For user interaction a push button will be used as a simple
switch to control when the user wants to report damage..

RFID

RFID otherwise known as Radio Frequency Identification,
meaning that it is a device or a technology that allows
communication between two components when they are
connected or come within a proximity. These will be placed
on the bike and locks to let us know when the bike is being
locked.

HID-RFID

These are proprietary RFID readers, which use
electromagnetic fields to transfer data for keeping track of
objects automatically. These RFID readers allow for ISU
students and faculty to use their ISU cards to rent these bikes.

OUTPUT

SOLENOID

A solenoid is a type of electromagnet with the purpose of
generating a controlled magnetic field in order to operate a
switch which in our case, will operate the lock mechanism.
We chose to use a 36V solenoid because of its durability, size,
and its strength to pull open the lock.

LEDS

The LEDs are being used for the user interface telling them
the status of the bike rack. Within this system we are using an
set of RGB LEDs which can only emit red, green, and blue light.
However through the combination of those lights all colors
can be made. On the dock the different colors represent
different statuses. There are two indicators which temporarily
show and general status colors which show while the dock is
powered and now showing an indicator. The indicators are
red and green which represent success and failure. The status
colors are white and blue. White shows when a bike is present
in the dock and blue shows when a bike is absent from the
dock. The final function is that if any light is present then the
dock is powered on.

IMPLEMENTATION OF PROJECT

CENTRAL SERVER

OVERVIEW

The software systems consists of two pieces of code: the Representational State Transfer (REST)
API and the UI. Both of these portions exist in the same code base, but each’s respective duties
provide a natural separation. Due to this separation we will discuss each portion’s implementation
and design individually.

DATA STORAGE/DATABASE

The CyBike system contains a database of Transactions, Bikes, Docks, and ErrorReports to model
our system. The use of these models helps to keep the systems complexity low by enforcing a
strict set of properties that each object must conform to.

The Dock model represents a dock that is placed on campus. To keep track of these, we give this
model a unique dockID, current bikeID, location, and status. When a bike is checked into the dock,

we update the dock’s bikeID property to match the bike that was checked in. The location is a
string representation of where the dock is located on campus and can be updated by
administrators. The status represents whether the dock is currently active and allowing bike
transactions to occur.

The Bike model represents a bike that is in our system. To keep track of these, each bike is given
a bikeID, studentID, dockID, state, and locked attribute. The bikeID is the uniquely identifying
property that each bike will have. The studentID is the ID of the current student that has the bike
checked out (or null if the bike is in a dock). The dockID is the ID of the dock that the bike is
currently checked into (or null if the bike is checked out). The state of the bike can be one of “in”,
“out”, or “maintenance”. If that state is currently “maintenance”, that means the bike has been
removed from the system temporarily, so a staff member can perform maintenance on the dock.
Lastly, the locked attribute of the bike represents whether transactions can be done on the bike.
A bike may be locked for reasons such as weather, season, or time of day.

The Transaction model represents a checkin or checkout of a bike in our system. Each transaction
is given a transactionID, studentID, dockID, bikeID, date, action, and success attributes. The
transactionID is the uniquely identifying property that each transaction will have. The studentID
is the ID of the student that requested the transaction. The dockID is the ID of the dock where the
transaction happened. The bikeID is the ID of the bike that the transaction is occurring on. The
date is the date and time in which the transaction occurred. The action is an indication of whether
the transaction is a checkin or a checkout. Lastly, the success attribute will show if the transaction
completed successfully or if it failed. A transaction could fail if the bike is in the locked state, if the
student has a biked checked out and tries to checkout another bike, or any other situation where
a student was unable to get the bike checked out or checked in.

The ErrorReport model represents an error that has occurred somewhere in the software system.
Each Error Report is given a stackTrace, dockID, date, and type. The stack trace contains the
information about the state of the system when the error occurred. The dockID is used to identify
which dock errored in case of a client error. The date is when the error occurred. The type is either
“server” or “client”. If the server code throws an error, it is considered a “server” error. An
example server error would be if a staff member attempts to add a bike to the system but the ID
they provide already exists on a bike. If anything running on a Raspberry Pi errors, it is considered
a “client” error. An example of a client error would be if the card reader on a dock received an
invalid card.

These models can be seen below:

F I GURE 2 . WE B SERVICE D ATA MO DEL S

REST API

The main goal of this portion of the code is to control and record all bike transactions in the
system. In order to keep record all of these transactions several models were created to represent
this information (Dock, Bike, and Transaction) and to control these models several HTTP endpoints
were created for each model. To manage the system as a whole, additional endpoints were added.
All of these models and endpoints can be seen Figure 2. To implement this REST API design, a Full-
Stack JavaScript solution comprised of MongoDB, Express, Angular, and Node was chosen - MEAN.
Furthermore, using GitHub and Heroku allowed the creation of a continuous integration pipeline
to easily deploy our application.

HTTP ENDPOINTS

The CYBIKE system contains many HTTP endpoints to manage and manipulate the above data
storage modules. The REST API and its endpoints follow the REST API standard in several ways.
First, when using the URL without a trailing “/ID” it will interact will all of the given models and
when a trailing “/ID” is given it will interact with the model with the given ID. Secondly, any get
endpoints will get all model(s) of the requested type, a post will create a new model instance of
the requested type, and finally, a put will replace a model with a different version of the model
of the requested type. There are other HTTP methods that we chose to not implement, because
they were not needed or could disrupt the system. There were several benefits to following the

transactionID: Number
studentID: String
dockID: String
bikeID: String
date: Date
action: Enum(‘in’, ‘out’)

 B l

Collection: Transaction

cardString: String

Collection: Admin

dockID: String
bikeID: String
location: String
status: Boolean

Collection: Dock

stackTrace: String
dockID: String
date: Date
type: Enum(‘server’,
client’)

Collection: ErrorReport

id: Number
studentID: String
dockID: String
bikeID: String
state: Enum(‘in’, ‘out’, ‘maintenance’)
isDamaged: Boolean

Collection: Bike

REST API standard such as allowing anyone who is familiar with REST APIs to quickly use our
system and to create a set of concise endpoints with a large variety of functionality.

The documentation for each endpoint contains several crucial pieces of information. First is the
name of each end point. Secondly, is the URL at which the endpoint can be interacted with, so the
use case “Get Docks” can be accessed at www.domain.com/api/dock. Next, the HTTP Method
used to interact with the endpoint is listed, so to access the endpoint “Get Docks” a get would be
needed, while a post would be needed for “Create Dock”. Next is the Parameter(s) for each
endpoint as each endpoint will need to be provided different information and sometimes in
different ways. Finally, the response is listed, whether it be a HTTP status code, a single JSON
object, or an array of JSON objects. All of these endpoints can be seen below:

TABLE 1: REST API ENDPOINTS

Name URL Method Params Response

Check in /api/checkin/ POST dockID: string
bikeID: string

200/500 HTTP

Check
out

/api/checkout POST dockID: string
bikeID: string
cardString: string

200/500 HTTP

TABLE 2: DOCK ENDPOINTS

Name URL Method Params Response

Get docks /api/dock/ GET N/A { { status: boolean,
dockID: string,
bikeID: string,
location: string},
... }

Get dock
by ID

/api/dock/ GET Inline Param { status: boolean,
 dockID: string,
 bikeID: string,
 location: string }

Create
dock

/api/dock/ POST dockID: string
location: string
status: boolean

200/500 HTTP

Create
dock

/api/dock/ PUT dockID: string,
location: string
status: boolean

200/500 HTTP

TABLE 3: BIKE ENDPOINTS

Name URL Method Params Response

Get bikes /api/bike/ GET N/A { { cardString: string/null,
bikeID: string,
dockID:string/null,
state: enum: ['in', 'out'
‘maintenance'] ,
isDamaged: boolean},
... }

Get bike by
ID

/api/bike/:ID GET Inline Param { cardString: string/null,
bikeID: string,
dockID: string/null,
state: enum: ['in', 'out'
'maintenance'] ,
isDamaged: boolean }

Create bike /api/bike/ POST bikeID: String 200/500 HTTP

Update bike /api/bike/ PUT dockID: string
cardString: string
isDamaged: boolean

200/500 HTTP

TABLE 4: TRANSACTION ENDPOINTS

Name URL Method Params Response

Get
transactions

/api/transaction GET N/A { { bikeID: string,
dockID: string,
studentID: string,
date: date,
action: string,
success: boolean }, ... }

TABLE 5: ERROR REPORTING ENDPOINTS

Name URL Method Params Response

Get error
reports

/api/errorreport

GET N/A { { stackTrace: string,
dockID: string,
date: date},
... }

Get error
reports by
dockID

/api/errorreport/
:dockID

GET Inline Param { { stackTrace: string,
dockID: string,
date: date},
... }

Create error
report

/api/errorrepor

t

POST trace: string
dockID: string

200/500 HTTP

ADMIN UI

The goal of the UI was to create a simple and intuitive web application that administrators could
visit to monitor and manage bikes, docks and transactions. It is designed to be a single-page
application to reduce load times between different views and to promote simplicity. Using
AngularJS allowed us to implement this easily using AngularJS Directives. We also wanted to allow
the users to use almost all of the HTTP endpoints through the UI, so they are able to add, edit, or
lock bikes and docks.

DOCKING STATIONS

OVERVIEW

The dock software is written in python, and runs on the Raspberry Pi. The Raspberry Pi is setup
with the Raspian Linux distribution, a Debian based distro designed specifically for use with the
Pi. The RFID readers are plugged into the USB ports on the Pi, and are accessed using a serial
connection. The data is read by each specific connector, and then added to a queue for processing
by the main thread. This allows for requests to be made to the centralized server asynchronously
of hardware components being accessed by users. The RGB LEDs are controlled by three separate
GPIO pins on the PI, one pin for each color. The GPIO pins connect to transistors on 5V voltage
regulator, allowing us to easily control the colors of the LEDs from the Pi without drawing too
much current directly from the GPIO pins. There is also a single GPIO pin used as a control signal
for the relay, which will trigger the 36V solenoid to pull the locking mechanism and release the
bike to the user.

MODULE DECOMPOSITION

DOCK CLASS

The Dock class is the main entry point of the dock
software. The Dock class creates instances for all
the different connectors: server, card, bike, led and
lock. The class also contains a queue which is
passed to the CardConnector and BikeConnector
and is used to inform the Dock class that an event
occurred. These connectors populate the queue
with events as they occur which are then handled in
the main loop of the dock. When an event occurs,
the dock’s main loop checks the sender and
responds appropriately. If the event is from the
CardConnector, the event is a checkout (the user
swipes their card to use a bike), while an event from
the BikeConnector is interpreted as a checkin event
(the bike is slid into the dock). If the dock is in the
prerequisite state for the event, the server is
contacted through the ServerConnector. Regardless
of success or error, the dock informs the
LedConnector to notify the user.

SERVERCONNECTOR CLASS

This class is responsible for transmitting all check in
and checkout events to the server, as well as
registering the dock on startup. The main Dock
thread is given a handle to this class, which allows
for web requests to be made asynchronously and
allow for smoother user interaction.

CARDCONNECTOR CLASS

When this class is initialized, it will kick off a new thread
to read the card data from the ISU card reader. When a
new card read event occurs, the card ID is pushed onto
the dock queue for processing.

self.server = ServerConnector
self.queue = Queue
self.card_connector = CardConnector
self.bike_connector = BikeConnector
self.led_connector = LedConnector
self.lock_connector = LockConnector
start()

Dock

self.base_url = string
self.dock_id = integer
check_out(bike_id, rfid_id)
check_in(bike_id)
register_dock(dock_id)
_make_request(endpoint, data)

ServerConnector

self.queue = Queue (from Dock)
self.ser = File (/dev/input/event0)
poll_card()

CardConnector

BIKECONNECTOR CLASS

This class is almost identical to the CardConnector,
except it reads the RFID tags of bikes which get checked
into the dock. These bike IDs are then pushed onto the
dock queue for processing.

LEDCONNECTOR CLASS

The LedConnector controls output to the user in the
form of Leds on the dock. The output is set to green or
red for 3 seconds (depending on an event success or
failure) and then returns to the idle state, which is either
white or blue depending on the state of the dock.

LOCKCONNECTOR CLASS

The LockConnector is responsible for triggering the
solenoid when a checkout occured. This is the only time
this module is used.

TESTING PROCESS

WEB API TESTING

The REST API was tested using Mocha, Chai, and SuperTest. Mocha is a JavaScript testing
framework, Mocha is a behavior driven development and test driven development assertion
library, and SuperTest is a HTTP assertion library. With these three frameworks, we are able to
easily test our API’s HTTP endpoints and verify they are responding with the intended response
by using functional tests. What these functional tests allow us to do is have the tests actually go

self.queue = Queue (from Dock)
self.ser = File (/dev/ttyUSB0)
poll_bike ()

BikeConnector

RED = 13
GREEN = 19
BLUE = 26
WHITE = 0
self.queue = Queue
poll_led()
trigger(led_id, status)
set_color(color)

LedConnector

self.pin_num = 21
self.queue = Queue
trigger()

LockConnector

in and interact with the database. By having tests do this, it allows us to view the system working
as a whole and ensuring our endpoints and UI are functioning correctly. Also, another positive is
that we can easily test our requirements through behavior driven development. For example, a
test to verify that creating a bike and adding it to the system could be done. This test would hit
the correct HTTP endpoint for creating a bike, create the bike and add it to the database. After
that is done, the test would then verify that the created bike has the correct data and that the api
call responded with the correct response (a 200 in this case).

CONCLUSION

The Bike Share project is a ground breaking idea that has the potential to become implemented
at campuses around the nation. It includes a spin of an already successful system that will easily
allow communities access to efficient transportation.

By making each dock modular, new stations can be easily implemented as the demand grows.
Additionally, mapping and application based programs for mobile devices could be included as
the program develops. As the docks spread, solar power can allow for placement in remote
locations.

It has been fun to see where this project has grown and can continue to thrive. There is likely
room for cost savings, but soon enough, the system should be available for mass production and
further additions.

APPENDIX 1: OPERATION MANUAL

USER – DOCK

Interaction with the docking stations is achieved primarily through the sensors on the dock
system. As the dock has no display other than the LED, it was important to create a simple UI
which is easy for the user to understand through color feedback.

BIKE CHECKOUT

1. To checkout, the user places card on dock activating HID card reader
a. The dock LED should flash green to indicate that the server has accepted the

checkout
2. The solenoid is engaged, pulling the locking pin and disengaging the locking mechanism

a. The user is able to remove the bike from the docking station

BIKE CHECK IN

1. User inserts the bike into any empty dock
a. Green LED Flashes to indicate that the bike was successfully checked in

ADMIN - WEBSITE

ADD BIKE

1. Navigate to Bikes page via the sidebar.
2. Select blue button with “+” next to Bikes header. See Figure 3 for details
3. In the window that appears, enter the new Bike’s Bike ID in the text field. See

Figure 4 for details.
4. Click “Add” button.

F I GURE 3 . B IKE S P A GE I N A DMI NI STR ATOR U SER INTE RF ACE

FI GURE 4 . A DD B IKE W IN D OW

LOCK BIKE

1. Navigate to Bikes page via the sidebar.
2. Find the desired bike to lock, then click “Lock” which appears under the “Actions”

column.
3. In the window that appears, click “Yes”. See Figure 5 for details.

F I GURE 5 . L O CK B IKE WI N DOW

UNLOCK BIKE

1. Navigate to Bikes page via the sidebar.
2. Find the desired bike to unlock, then click “Unlock” which appears under the

“Actions” column.
3. In the window that appears, click “Yes”. See Figure 6 for details.

F I GURE 6 . U NL OCK B IKE W INDO W

EDIT BIKE

1. Navigate to Bikes page via the sidebar.
2. Find the desired bike to edit, then click “Edit” which appears under the “Actions”

column.
3. In the window that appears, edit Current Dock ID or state. Once completed, click

“Edit” in the bottom-right corner of the window. See Figure 7 for details.

F I GURE 7 . E DIT B IKE WI N D OW

FI GURE 8 . DOCK S PA GE I N AD MI NI STRATOR U SER I NT ERF ACE

ADD DOCK

1. Navigate to Docks page via the sidebar.
2. Select blue button with “+” next to Docks header. See Figure 8 for details.
3. In the window that appears, enter the new Dock’s ID in the text field. Optionally,

you may supply a location. See Figure 9 for details.
4. Click “Add” button.

F I GURE 9 . A DD DOCK WI N DOW

EDIT DOCK

1. Navigate to Docks page via the sidebar.
2. Find the desired dock to edit, then click “Edit” which appears under the “Action”

column.
3. In the window that appears, edit location, current bike ID or status. Once

completed, click “Edit” in the bottom-right corner of the window. See Figure 10 for
details.

FI GURE 10. EDIT DOC K WI NDOW

APPENDIX 2: OTHER CONSIDERATIONS

When it came to implementation, transitioning the circuits from breadboard to perf board proved
to be difficult. This can be avoided by using a PCB and getting the circuit fabricated before
inclusion.

Looking further into how to better the dynamo/light interaction within the bike will be useful.
The swivel of the handlebars has caused problems. Along with that, efficient charging
components that are relatively small in size could be included for future versions.

APPENDIX 4: CODE

Both the Web Interface and Raspberry Pi code is located on GitHub. The code can be seen at this
link: https://github.com/ISUBikeShare

https://github.com/ISUBikeShare

	Team
	Date
	Members
	Advisor
	Client
	Introduction
	Project Design
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	Functional Decomposition
	High Level Decomposition

	Hardware/Software Specifications
	System Overview
	Hardware Specifications
	System Power
	Control
	Output

	120 VAC TO 36 VDC POWER SUPPLY
	36 VDC TO 5 VDC REGULATOR CIRCUIT
	SOLAR PANEL
	BATTERY BANK
	CHARGE CONTROLLER
	INVERTER
	RELAY
	RASPBERRY PI
	PUSH BUTTON
	RFID
	HID-RFID
	SOLENOID
	LEDS
	Implementation of Project
	Central Server
	Overview
	Data Storage/Database
	Rest API
	HTTP Endpoints
	Table 1: REST API Endpoints
	Table 2: Dock Endpoints
	Table 3: Bike Endpoints
	Table 4: Transaction Endpoints
	Table 5: Error Reporting Endpoints

	Admin UI

	Docking Stations
	Overview
	Module Decomposition

	DOCK CLASS
	SERVERCONNECTOR CLASS
	CARDCONNECTOR CLASS
	BIKECONNECTOR CLASS
	LEDCONNECTOR CLASS
	LOCKCONNECTOR CLASS
	Testing Process
	Web API testing

	Conclusion
	Appendix 1: Operation Manual
	User – Dock
	Bike Checkout
	Bike Check in

	Admin - Website
	Add Bike
	Lock Bike
	Unlock Bike
	Edit Bike
	Add Dock
	Edit Dock

	Appendix 2: Other Considerations
	Appendix 4: Code

